
Lecture 17

In the last lecture, we have introduced Cauchy integral formula and two applications of it. One is the
Liouville’s theorem and another one is Morera’s theorem. Today we are going to study removability of
singularities and Taylor’s expansion. Some applications of Taylor’s expansion will also be shown.

Theorem 0.1 (Removability of Singularities). Letting ∆ be a disk and f be analytic on ∆′ = ∆\{z1, ..., zn},
then if

lim
z→zj

(z − zj)f(z) = 0, for all j = 1, ..., n,

then f can be extended to be an analytic function on ∆.

Proof. The proof is trivial. By Cauchy integral formula, we know that

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw,

where γ, z are given in figure 1 (see another file). Noticing that f(z) has no definition at z1, ..., zn, but the
right-hand side of the above equality has definition at z1, ..., zn. Therefore we can redefine the value of f at
z1, ...zn to be

1

2πi

∫
γ

f(w)

w − zj
dw, j = 1, ..., n

then f is an analytic function on ∆.

Now we begin to study Taylor’s expansion. In fact there are two versions of Taylor’s expansion. One is
of finite type and another one is of infinite type. We take a look at the finite type first. Define

g1(z) = f(z)− f(z0),

where z and z0 are shown in Figure 2 of another file. By Cauchy integral formula, we know that

g1(z) =
1

2πi

∫
γ

f(w)

w − z
− f(w)

w − z0
dw =

z − z0
2πi

∫
γ

f(w)

(w − z)(w − z0)
dw. (0.1)

Now we study

1

2πi

∫
γ

f(w)

(w − z)(w − z0)
dw.

Clearly by Cauchy integral formula, we know that

f ′(z0) =
1

2πi

∫
γ

f(w)

(w − z0)2
dw,

therefore it holds

1

2πi

∫
γ

f(w)

(w − z)(w − z0)
dw − f ′(z0) =

1

2πi

∫
γ

f(w)

(w − z)(w − z0)
dw − 1

2πi

∫
γ

f(w)

(w − z0)2
dw

=
1

2πi

∫
γ

f(w)

w − z0

(
1

w − z
− 1

w − z0

)
dw =

z − z0
2πi

∫
γ

f(w)

(w − z)(w − z0)2
dw

Applying the above equality into the right-hand side of (0.1), we have

g1(z) = f ′(z0)(z − z0) +
(z − z0)2

2πi

∫
γ

f(w)

(w − z)(w − z0)2
dw.
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Hence if we define

g2(z) = f(z)− f(z0)− f ′(z0)(z − z0),

then clearly

g2(z) =
(z − z0)2

2πi

∫
γ

f(w)

(w − z)(w − z0)2
dw.

Repeating all the above arguments and using induction, we can show that

Theorem 0.2 (Taylor’s theorem type I). Define

gn(z) = f(z)− f(z0)− ...− f (n)(z0)

n!
(z − z0)n,

then

gn(z) =
(z − z0)n+1

2πi

∫
γ

f(w)

(w − z)(w − z0)n+1
dw,

where z and z0 and γ are shown in Figure 2 of another file. In other words, we can write f as

f(z) = f(z0) + ...+
f (n)(z0)

n!
(z − z0)n +

(z − z0)n+1

2πi

∫
γ

f(w)

(w − z)(w − z0)n+1
dw.

Now we estimate the term gn(z). it can be shown that

|gn(z)| ≤ 1

2π

∫
γ

|f(w)|
|w − z|

(
|z − z0|
|w − z0|

)n+1

|dw|.

From Figure 2, it is clear that |w−z| ≥ R−|z−z0| for all w on γ. Moreover since f is continuous on γ, then
we can find a constant M so that |f(w)| ≤M for all w on γ. Therefore by the above inequality, we have

|gn(z)| ≤ M

2π

1

R− |z − z0|

(
|z − z0|
R

)n+1 ∫
γ

|dw| = MR

R− |z − z0|

(
|z − z0|
R

)n+1

.

For all z in the disk BR(z0) (see Figure 2), we have |z − z0| < R. Therefore the most-right-hand side above
converges to 0 as n goes to ∞. it then holds that

lim
n→∞

gn(z) = 0, for all z in BR(z0).

This shows the following theorem

Theorem 0.3 (Taylor’s theorem type II). z, z0 and γ are shown in Figure 2. Then we have

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

provided that f is analytic in Ω.

Now we begin to study some applications of Theorems 0.2-0.3.

Isolated Zeros
1. if z0 is one zero of f and

f (k)(z0) = 0, for all k = 1, ...,
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then by Theorem 0.3, we have f(z) = 0 for all z in BR(z0).

2. otherwise, there is k0 such that f ′(z0) =, ...,= f (k0−1)(z0) = 0 and f (k0)(z0) 6= 0. Therefore by Theorem
0.2, we have

f(z) =
f (k0)(z0)

k0!
(z − z0)k0 +

(z − z0)k0+1

2πi

∫
γ

f(w)

(w − z)(w − z0)k0+1
dw

=

[
f (k0)(z0)

k0!
+
z − z0

2πi

∫
γ

f(w)

(w − z)(w − z0)k0+1
dw

]
(z − z0)k0

Letting

g(z) =
f (k0)(z0)

k0!
+
z − z0

2πi

∫
γ

f(w)

(w − z)(w − z0)k0+1
dw,

then by the fact that f (k0)(z0) 6= 0, we have

g(z) 6= 0, for all z in Bε(z0).

Here ε is a positive number suitably small. In light that f(z) = g(z)(z−z0)k0 , we know that in Bε(z0), there
is only one zero of f . That is z0. There is no other zeros of f in Bε(z0).

The above arguments show that

Theorem 0.4 (Isolation of Zeros). If z0 is one zero of f , then either f(z) = 0 for all z in some BR(z0) or
in a ball Bε(z0) there is just one zero (z0) of f in Bε(z0).

Moreover if Ω is path-connected we further have

Theorem 0.5. If Ω is path-connected, then either f ≡ 0 in Ω or all zeros of f in Ω are isolated. Here Ω is
path-connected means that for all z1 and z2 in Ω, we can find a continous path l in Ω connecting z1 and z2.

Proof. if z0 is not an isolated zeor of f , then by Theorem 0.4, we know that f(z) = 0 for all z in some
Bε(z0). now we pick up an arbitrary point z1 in Ω and connect z1 with z0 by a continuous path l (see Figure
3). Supposing that we can cover l by two balls, say B1 and B2 = Bε(z0). Then B1 and B2 must have
intersection. Choosing z2 a point in the intersection, clearly all derivatives of f at z2 must be zero. Applying
Theorem 0.2, we know that for all points in B1, f must all equal to zero. Hence f(z1) = 0. Therefore we
know that if we have one zero of f which is not isolated, then f must equal to 0 in Ω.

Isolated Poles The study of poles are similar to zeros. Supposing that z0 is a pole of f , then we have

lim
z→z0

f(z) =∞.

Now we define

h(z) = 1/f(z).

clearly z0 is one zero of h. By removability of singularities, we know that h is analytic at z0. Therefore by
Theorem 0.4, we know that

Theorem 0.6. Either f(z) =∞ for all z in some BR(z0). Or there is just one pole of f in some Bε(z0).

Finitely many zeros of an analytic function in bounded domain Theorems 0.4-0.5 have a stright-
forward corollary.
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Theorem 0.7. If f is analytic in a bounded domain Ω, then f has only finitely many zeros in Ω, provided
that f does not equivalently equal to 0 in Ω. Here Ω is a path-connected domain.

Proof. If there is a sequence of different zeros of f , say {zj}. then we have a subsequence of {zj}, still
denoted by {zj} so that zj −→ z∗ for some z∗ in Ω. Since f does not identically equal to 0 in Ω, then by
Theorem 0.5, we know that there must be a tiny disk Bε(z

∗) such that in this tiny disk f has only one zero.
That is z∗. But this is a contradiction since we know that zj → z∗ as j → ∞.Therefore we cannot have
infinitely many zeros in Ω

Moreover, Theorem 0.7 tells us that

Theorem 0.8. If Ω is path-connected and f , g are two analytic functions on Ω, then if f(zj) = g(zj) for a
sequence of infinitely many points, then f(z) = g(z) for all z in Ω.

Proof. Define F = f − g, then F (zj) = 0 for all j = 1, .... Therefore by Theorem 0.7, we know that F (z) = 0
for all z in Ω which shows the Theorem 0.8.

Laurent Series Now we assume f is a holomorphic function on the annulus AR1,R2
(z0). More precisely we

define

AR1,R2(z0) = {z : |z − z0| ∈ (R1, R2)} .

Here we assume that R1 < R2. Moreover we denote by C1 the circle centered at z0 with radius R1. C2

the circle centered at z0 with radius R2. The direction of C1 and C2 are chosen to be positive (see graph).
For any given z ∈ AR1,R2

(z0), we can separate AR1,R2
(z0) into two parts, i.e. Region I and region II. On

the common edges l1 and l2, the induced direction on each part I and II are drawn. Using Cauchy integral
formula, we have

f(z) =
1

2πi

∫
A+B+C+D

f(w)

w − z
dw, 0 =

1

2πi

∫
E+F+G+H

f(w)

w − z
dw.

Summing the above two equalities and noticing that the integrals on the common edges B, H, D, F are
cancelled, therefore we have

f(z) =
1

2πi

∫
A+E

f(w)

w − z
dw +

1

2πi

∫
C+G

f(w)

w − z
dw.

Clearly A+ E = C2 and C +G = −C1, therefore it holds

f(z) =
1

2πi

∫
C2

f(w)

w − z
dw − 1

2πi

∫
C1

f(w)

w − z
dw. (0.2)

If w ∈ C2, then we have R2 = |w − z0| > |z − z0|. Therefore

1

2πi

∫
C2

f(w)

w − z
dw =

1

2πi

∫
C2

f(w)

(w − z0)− (z − z0)
dw =

1

2πi

∫
C2

f(w)

(w − z0)

1

1− z−z0
w−z0

dw

(0.3)

=
1

2πi

∫
C2

f(w)

(w − z0)

∞∑
k=0

(
z − z0
w − z0

)k
=

∞∑
k=0

(
1

2πi

∫
C2

f(w)

(w − z0)k+1
dw

)
(z − z0)

k

If w ∈ C1, then we have R1 = |w − z0| < |z − z0|. Therefore

1

2πi

∫
C1

f(w)

w − z
dw =

1

2πi

∫
C1

f(w)

(w − z0)− (z − z0)
dw =

1

2πi

∫
C1

f(w)

−(z − z0)

1

1− w−z0
z−z0

dw

(0.4)

=
1

2πi

∫
C1

f(w)

−(z − z0)

∞∑
k=0

(
w − z0
z − z0

)k
= −

∞∑
k=0

(
1

2πi

∫
C1

f(w)(w − z0)k dw

)
(z − z0)

−k−1
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If we use l = −k − 1 to change the indiceds in the last equality of (0.4), then we see that while k runs from
0 to ∞, l should vary from −1 to −∞. Therefore (0.4) can be written as follows:

1

2πi

∫
C1

f(w)

w − z
dw = −

−∞∑
l=−1

(
1

2πi

∫
C1

f(w)

(w − z0)l+1
dw

)
(z − z0)

l
. (0.5)

Applying (0.3) and (0.5) to (0.2), we get

f(z) =

∞∑
k=−∞

bk(z − z0)k, (0.6)

where

bk =
1

2πi

∫
C2

f(w)

(w − z0)k+1
dw, if k ≥ 0 (0.7)

and

bk =
1

2πi

∫
C1

f(w)

(w − z0)k+1
dw, if k < 0. (0.8)

(0.6) is the so-called Laurent series. The formula (0.7)-(0.8) are used to determine the coefficients bk. The
only difference in (0.7)-(0.8) is the integration curve. If k ≥ 0, then bk is obtained by integration on outer
circle C2. If k is negative, bk should be obtained by integration on inner circle C1.
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